Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Front Cell Infect Microbiol ; 12: 1079926, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2198726

RESUMEN

Virus-Like Particles (VLPs) are nanostructures that share conformation and self-assembly properties with viruses, but lack a viral genome and therefore the infectious capacity. In this study, we produced VLPs by co-expression of VSV glycoprotein (VSV-G) and HIV structural proteins (Gag, Pol) that incorporated a strong sequence-optimized 5'ppp-RNA RIG-I agonist, termed M8. Treatment of target cells with VLPs-M8 generated an antiviral state that conferred resistance against multiple viruses. Interestingly, treatment with VLPs-M8 also elicited a therapeutic effect by inhibiting ongoing viral replication in previously infected cells. Finally, the expression of SARS-CoV-2 Spike glycoprotein on the VLP surface retargeted VLPs to ACE2 expressing cells, thus selectively blocking viral infection in permissive cells. These results highlight the potential of VLPs-M8 as a therapeutic and prophylactic vaccine platform. Overall, these observations indicate that the modification of VLP surface glycoproteins and the incorporation of nucleic acids or therapeutic drugs, will permit modulation of particle tropism, direct specific innate and adaptive immune responses in target tissues, and boost immunogenicity while minimizing off-target effects.


Asunto(s)
COVID-19 , Interferón Tipo I , Vacunas de Partículas Similares a Virus , Virosis , Humanos , SARS-CoV-2 , Linfocitos T CD8-positivos , Vacunas de Partículas Similares a Virus/genética
2.
Virol J ; 19(1): 112, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1905664

RESUMEN

BACKGROUND: Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory disease in humans, with a case fatality rate of approximately 35%, thus posing a considerable threat to public health. The lack of approved vaccines or antivirals currently constitutes a barrier in controlling disease outbreaks and spread. METHODS: In this study, using a mammalian expression system, which is advantageous for maintaining correct protein glycosylation patterns, we constructed chimeric MERS-CoV virus-like particles (VLPs) and determined their immunogenicity and protective efficacy in mice. RESULTS: Western blot and cryo-electron microscopy analyses demonstrated that MERS-CoV VLPs were efficiently produced in cells co-transfected with MERS-CoV spike (S), envelope, membrane and murine hepatitis virus nucleocapsid genes. We examined their ability as a vaccine in a human dipeptidyl peptidase 4 knock-in C57BL/6 congenic mouse model. Mice immunized with MERS VLPs produced S-specific antibodies with virus neutralization activity. Furthermore, MERS-CoV VLP immunization provided complete protection against a lethal challenge with mouse-adapted MERS-CoV and improved virus clearance in the lung. CONCLUSIONS: Overall, these data demonstrate that MERS-CoV VLPs have excellent immunogenicity and represent a promising vaccine candidate.


Asunto(s)
Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Vacunas de Partículas Similares a Virus , Vacunas Virales , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Microscopía por Crioelectrón , Mamíferos , Ratones , Ratones Endogámicos C57BL , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas de Partículas Similares a Virus/genética , Vacunas Virales/genética
3.
Vaccine ; 40(30): 4017-4025, 2022 06 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1867870

RESUMEN

Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection resulting in the coronavirus disease 2019 (COVID-19) has afflicted hundreds of millions of people in a worldwide pandemic. Several safe and effective COVID-19 vaccines are now available. However, the rapid emergence of variants and risk of viral escape from vaccine-induced immunity emphasize the need to develop broadly protective vaccines. A recombinant plant-derived virus-like particle vaccine for the ancestral COVID-19 (CoVLP) recently authorized by Canadian Health Authorities and a modified CoVLP.B1351 targeting the B.1.351 variant (both formulated with the adjuvant AS03) were assessed in homologous and heterologous prime-boost regimen in mice. Both strategies induced strong and broadly cross-reactive neutralizing antibody (NAb) responses against several Variants of Concern (VOCs), including B.1.351/Beta, B.1.1.7/Alpha, P.1/Gamma, B.1.617.2/Delta and B.1.1.529/Omicron strains. The neutralizing antibody (NAb) response was robust with both primary vaccination strategies and tended to be higher for almost all VOCs following the heterologous prime-boost regimen.


Asunto(s)
COVID-19 , Vacunas de Partículas Similares a Virus , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Canadá , Humanos , Ratones , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas de Partículas Similares a Virus/genética
4.
Sci Rep ; 12(1): 1005, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1635617

RESUMEN

The pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused a public health emergency, and research on the development of various types of vaccines is rapidly progressing at an unprecedented development speed internationally. Some vaccines have already been approved for emergency use and are being supplied to people around the world, but there are still many ongoing efforts to create new vaccines. Virus-like particles (VLPs) enable the construction of promising platforms in the field of vaccine development. Here, we demonstrate that non-infectious SARS-CoV-2 VLPs can be successfully assembled by co-expressing three important viral proteins membrane (M), envelop (E) and nucleocapsid (N) in plants. Plant-derived VLPs were purified by sedimentation through a sucrose cushion. The shape and size of plant-derived VLPs are similar to native SARS-CoV-2 VLPs without spike. Although the assembled VLPs do not have S protein spikes, they could be developed as formulations that can improve the immunogenicity of vaccines including S antigens, and further could be used as platforms that can carry S antigens of concern for various mutations.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Proteínas M de Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Proteínas Viroporinas/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Proteínas M de Coronavirus/genética , Proteínas M de Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Humanos , Nicotiana/inmunología , Nicotiana/metabolismo , Nicotiana/virología , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/metabolismo , Proteínas Viroporinas/genética , Proteínas Viroporinas/metabolismo
5.
Int J Biol Macromol ; 200: 487-497, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1634879

RESUMEN

Virus-like particles (VLPs) are nano-scale particles that are morphologically similar to a live virus but which lack a genetic component. Since the pandemic spread of COVID-19, much focus has been placed on coronavirus (CoV)-related VLPs. CoVs contain four structural proteins, though the minimum requirement for VLP formation differs among virus species. CoV VLPs are commonly produced in mammalian and insect cell systems, sometimes in the form of chimeric VLPs that enable surface display of CoV epitopes. VLPs are an ideal model for virological research and have been applied as vaccines and diagnostic reagents to aid in clinical disease control. This review summarizes and updates the research progress on the characteristics of VLPs from different known CoVs, mainly focusing on assembly, in vitro expression systems for VLP generation, VLP chimerism, protein-based nanoparticles and their applications in basic research and clinical settings, which may aid in development of novel VLP vaccines against emerging coronavirus diseases such as SARS-CoV-2.


Asunto(s)
Coronavirus/genética , Coronavirus/inmunología , Vacunas de Partículas Similares a Virus/biosíntesis , Vacunas de Partículas Similares a Virus/genética , Animales , Quimerismo , Epítopos , Humanos , SARS-CoV-2/inmunología , Vacunas de Partículas Similares a Virus/uso terapéutico , Proteínas Virales , Ensamble de Virus
6.
Biotechnol Lett ; 44(1): 45-57, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-1536319

RESUMEN

After its emergence in late 2019 SARS-CoV-2 was declared a pandemic by the World Health Organization on 11 March 2020 and has claimed more than 2.8 million lives. There has been a massive global effort to develop vaccines against SARS-CoV-2 and the rapid and low cost production of large quantities of vaccine is urgently needed to ensure adequate supply to both developed and developing countries. Virus-like particles (VLPs) are composed of viral antigens that self-assemble into structures that mimic the structure of native viruses but lack the viral genome. Thus they are not only a safer alternative to attenuated or inactivated vaccines but are also able to induce potent cellular and humoral immune responses and can be manufactured recombinantly in expression systems that do not require viral replication. VLPs have successfully been produced in bacteria, yeast, insect and mammalian cell cultures, each production platform with its own advantages and limitations. Plants offer a number of advantages in one production platform, including proper eukaryotic protein modification and assembly, increased safety, low cost, high scalability as well as rapid production speed, a critical factor needed to control outbreaks of potential pandemics. Plant-based VLP-based viral vaccines currently in clinical trials include, amongst others, Hepatitis B virus, Influenza virus and SARS-CoV-2 vaccines. Here we discuss the importance of plants as a next generation expression system for the fast, scalable and low cost production of VLP-based vaccines.


Asunto(s)
Vacunas contra la COVID-19/biosíntesis , Plantas Modificadas Genéticamente/metabolismo , SARS-CoV-2/inmunología , Vacunas de Partículas Similares a Virus/biosíntesis , Antígenos Virales/genética , Antígenos Virales/metabolismo , Vacunas contra la COVID-19/economía , Vacunas contra la COVID-19/genética , Expresión Génica , Plantas Modificadas Genéticamente/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vacunas de Partículas Similares a Virus/economía , Vacunas de Partículas Similares a Virus/genética , Vacunas Virales/biosíntesis , Vacunas Virales/genética
7.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1481965

RESUMEN

Self-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE). Evaluation of this replicon in mice expressing human dipeptidyl peptidase 4, the virus receptor, showed that the single deletion of the E gene generated an attenuated mutant. The combined deletion of the E gene with accessory open reading frames (ORFs) 3, 4a, 4b, and 5 resulted in a highly attenuated propagation-defective RNA replicon (MERS-CoV-Δ[3,4a,4b,5,E]). This RNA replicon induced sterilizing immunity in mice after challenge with a lethal dose of a virulent MERS-CoV, as no histopathological damage or infectious virus was detected in the lungs of challenged mice. The four mutants lacking the E gene were genetically stable, did not recombine with the E gene provided in trans during their passage in cell culture, and showed a propagation-defective phenotype in vivo. In addition, immunization with MERS-CoV-Δ[3,4a,4b,5,E] induced significant levels of neutralizing antibodies, indicating that MERS-CoV RNA replicons are highly safe and promising vaccine candidates.


Asunto(s)
Infecciones por Coronavirus/prevención & control , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , ARN Viral/administración & dosificación , Replicón , Vacunas Virales/administración & dosificación , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Virus Defectuosos/genética , Virus Defectuosos/inmunología , Femenino , Eliminación de Gen , Genes env , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , ARN Viral/genética , ARN Viral/inmunología , Vacunas de ADN , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología , Virulencia/genética , Virulencia/inmunología
8.
Curr Top Med Chem ; 21(14): 1235-1250, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1441869

RESUMEN

BACKGROUND: Virus-like Particles (VLPs) are non-genetic multimeric nanoparticles synthesized through in vitro or in vivo self-assembly of one or more viral structural proteins. Immunogenicity and safety of VLPs make them ideal candidates for vaccine development and efficient nanocarriers for foreign antigens or adjuvants to activate the immune system. AIMS: The present study aimed to design and synthesize a chimeric VLP vaccine of the phage Qbeta (Qß) coat protein presenting the universal epitope of the coronavirus. METHODS: The RNA phage Qß coat protein was designed and synthesized, denoted as Qbeta. The CoV epitope, a universal epitope of coronavirus, was inserted into the C-terminal of Qbeta using genetic recombination, designated as Qbeta-CoV. The N-terminal of Qbeta-CoV was successively inserted into the TEV restriction site using mCherry red fluorescent label and modified affinity purified histidine label 6xHE, which was denoted as HE-Qbeta-CoV. Isopropyl ß-D-1-thiogalactopyranoside (IPTG) assessment revealed the expression of Qbeta, Qbeta-CoV, and HE-Qbeta-CoV in the BL21 (DE3) cells. The fusion protein was purified by salting out using ammonium sulfate and affinity chromatography. The morphology of particles was observed using electron microscopy. The female BALB/C mice were immunized intraperitoneally with the Qbeta-CoV and HE-Qbeta-- CoV chimeric VLPs vaccines and their sera were collected for the detection of antibody level and antibody titer using ELISA. The serum is used for the neutralization test of the three viruses of MHV, PEDV, and PDCoV. RESULTS: The results revealed that the fusion proteins Qbeta, Qbeta-CoV, and HE-Qbeta-CoV could all obtain successful expression. Particles with high purity were obtained after purification; the chimeric particles of Qbeta-CoV and HE-Qbeta-CoV were found to be similar to Qbeta particles in morphology and formed chimeric VLPs. In addition, two chimeric VLP vaccines induced specific antibody responses in mice and the antibodies showed certain neutralizing activity. CONCLUSION: The successful construction of the chimeric VLPs of the phage Qß coat protein presenting the universal epitope of coronavirus provides a vaccine form with potential clinical applications for the treatment of coronavirus disease.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Proteínas de la Cápside/inmunología , Coronavirus/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Animales , Antígenos Virales/genética , Antígenos Virales/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Ratones Endogámicos BALB C , Microscopía Electrónica de Rastreo , Filogenia , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Vacunas de Partículas Similares a Virus/genética , Proteínas Virales/genética
9.
EMBO Rep ; 22(8): e52447, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1278776

RESUMEN

Cyclic GMP-AMP (cGAMP) is an immunostimulatory molecule produced by cGAS that activates STING. cGAMP is an adjuvant when administered alongside antigens. cGAMP is also incorporated into enveloped virus particles during budding. Here, we investigate whether inclusion of cGAMP within viral vaccine vectors enhances their immunogenicity. We immunise mice with virus-like particles (VLPs) containing HIV-1 Gag and the vesicular stomatitis virus envelope glycoprotein G (VSV-G). cGAMP loading of VLPs augments CD4 and CD8 T-cell responses. It also increases VLP- and VSV-G-specific antibody titres in a STING-dependent manner and enhances virus neutralisation, accompanied by increased numbers of T follicular helper cells. Vaccination with cGAMP-loaded VLPs containing haemagglutinin induces high titres of influenza A virus neutralising antibodies and confers protection upon virus challenge. This requires cGAMP inclusion within VLPs and is achieved at markedly reduced cGAMP doses. Similarly, cGAMP loading of VLPs containing the SARS-CoV-2 Spike protein enhances Spike-specific antibody titres. cGAMP-loaded VLPs are thus an attractive platform for vaccination.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , Vacunas de Partículas Similares a Virus , Animales , Humanos , Ratones , Nucleótidos Cíclicos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de Partículas Similares a Virus/genética
10.
Commun Biol ; 4(1): 597, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1236095

RESUMEN

The COVID-19 pandemic continues to wreak havoc as worldwide SARS-CoV-2 infection, hospitalization, and death rates climb unabated. Effective vaccines remain the most promising approach to counter SARS-CoV-2. Yet, while promising results are emerging from COVID-19 vaccine trials, the need for multiple doses and the challenges associated with the widespread distribution and administration of vaccines remain concerns. Here, we engineered the coat protein of the MS2 bacteriophage and generated nanoparticles displaying multiple copies of the SARS-CoV-2 spike (S) protein. The use of these nanoparticles as vaccines generated high neutralizing antibody titers and protected Syrian hamsters from a challenge with SARS-CoV-2 after a single immunization with no infectious virus detected in the lungs. This nanoparticle-based vaccine platform thus provides protection after a single immunization and may be broadly applicable for protecting against SARS-CoV-2 and future pathogens with pandemic potential.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/inmunología , COVID-19/prevención & control , Pandemias , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Inmunización/métodos , Levivirus/genética , Levivirus/inmunología , Mesocricetus , Microscopía Electrónica de Transmisión , Modelos Animales , Nanopartículas/administración & dosificación , Nanopartículas/ultraestructura , Nanotecnología , Pandemias/prevención & control , Ingeniería de Proteínas , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/administración & dosificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Combinadas/administración & dosificación , Vacunas Combinadas/genética , Vacunas Combinadas/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/inmunología
11.
Viruses ; 12(3)2020 02 28.
Artículo en Inglés | MEDLINE | ID: covidwho-822450

RESUMEN

Vaccination is one of the most effective public health interventions of the 20th century. All vaccines can be classified into different types, such as vaccines against infectious diseases, anticancer vaccines and vaccines against autoimmune diseases. In recent decades, recombinant technologies have enabled the design of experimental vaccines against a wide range of diseases using plant viruses and virus-like particles as central elements to stimulate protective and long-lasting immune responses. The analysis of recent publications shows that at least 97 experimental vaccines have been constructed based on plant viruses, including 71 vaccines against infectious agents, 16 anticancer vaccines and 10 therapeutic vaccines against autoimmune disorders. Several plant viruses have already been used for the development of vaccine platforms and have been tested in human and veterinary studies, suggesting that plant virus-based vaccines will be introduced into clinical and veterinary practice in the near future.


Asunto(s)
Virus de Plantas/genética , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Control de Enfermedades Transmisibles , Enfermedades Transmisibles/etiología , Enfermedades Transmisibles/inmunología , Ingeniería Genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Humanos , Hipersensibilidad/inmunología , Hipersensibilidad/terapia , Neoplasias/inmunología , Neoplasias/terapia , Virus de Plantas/ultraestructura , Vacunas de Partículas Similares a Virus/uso terapéutico , Vacunas de Partículas Similares a Virus/ultraestructura , Vacunología/métodos , Vacunología/tendencias , Virión
12.
Cell Res ; 30(10): 936-939, 2020 10.
Artículo en Inglés | MEDLINE | ID: covidwho-720830
13.
Angew Chem Int Ed Engl ; 59(43): 18885-18897, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: covidwho-642379

RESUMEN

The current COVID-19 pandemic has a tremendous impact on daily life world-wide. Despite the ability to dampen the spread of SARS-CoV-2, the causative agent of the diseases, through restrictive interventions, it is believed that only effective vaccines will provide sufficient control over the disease and revert societal live back to normal. At present, a double-digit number of efforts are devoted to the development of a vaccine against COVID-19. Here, we provide an overview of these (pre)clinical efforts and provide background information on the technologies behind these vaccines. In addition, we discuss potential hurdles that need to be addressed prior to mass scale clinical translation of successful vaccine candidates.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Humanos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Vacunas de ADN/inmunología , Vacunas de ADN/metabolismo , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/metabolismo , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/metabolismo
14.
Viruses ; 12(5)2020 05 08.
Artículo en Inglés | MEDLINE | ID: covidwho-209967

RESUMEN

In the midst of the ongoing COVID-19 coronavirus pandemic, influenza virus remains a major threat to public health due to its potential to cause epidemics and pandemics with significant human mortality. Cases of H7N9 human infections emerged in eastern China in 2013 and immediately raised pandemic concerns as historically, pandemics were caused by the introduction of new subtypes into immunologically naïve human populations. Highly pathogenic H7N9 cases with severe disease were reported recently, indicating the continuing public health threat and the need for a prophylactic vaccine. Here we review the development of recombinant influenza virus-like particles (VLPs) as vaccines against H7N9 virus. Several approaches to vaccine development are reviewed including the expression of VLPs in mammalian, plant and insect cell expression systems. Although considerable progress has been achieved, including demonstration of safety and immunogenicity of H7N9 VLPs in the human clinical trials, the remaining challenges need to be addressed. These challenges include improvements to the manufacturing processes, as well as enhancements to immunogenicity in order to elicit protective immunity to multiple variants and subtypes of influenza virus.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Vacunas de Partículas Similares a Virus/genética , Animales , Antígenos Virales/inmunología , Ensayos Clínicos como Asunto , Epítopos , Antígenos de Histocompatibilidad Clase II , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA